Respuesta :

Answer:

Second option 3; -3

[tex]\lim_{x \to 2^-}f(x)=3[/tex]

[tex]\lim_{x \to 2^+}f(x)=-3[/tex]

Step-by-step explanation:

We want to find:

[tex]\lim_{x \to 2^+}f(x)[/tex] and [tex]\lim_{x \to 2^-}f(x)[/tex]

When x tends to 2 on the left then [tex]x <2[/tex].

When x is less than 2 [tex]f(x) = 3[/tex]. This implies that the limit of f(x) when x approaches 2 from the left is equal to 3. Observe the attached image.

This is:

[tex]\lim_{x \to 2^-}f(x)=3[/tex]

Also When x tends to 2 on the rigtn then [tex]x >2[/tex].

When x is greater than 2 [tex]f(x) = -3[/tex]. This implies that the limit of f(x) when x approaches 2 from the rigth is equal to -3. This is:

[tex]\lim_{x \to 2^+}f(x)=-3[/tex] Observe the attached image.

Ver imagen luisejr77