Can someone answer this?

Answer:
Second option 3; -3
[tex]\lim_{x \to 2^-}f(x)=3[/tex]
[tex]\lim_{x \to 2^+}f(x)=-3[/tex]
Step-by-step explanation:
We want to find:
[tex]\lim_{x \to 2^+}f(x)[/tex] and [tex]\lim_{x \to 2^-}f(x)[/tex]
When x tends to 2 on the left then [tex]x <2[/tex].
When x is less than 2 [tex]f(x) = 3[/tex]. This implies that the limit of f(x) when x approaches 2 from the left is equal to 3. Observe the attached image.
This is:
[tex]\lim_{x \to 2^-}f(x)=3[/tex]
Also When x tends to 2 on the rigtn then [tex]x >2[/tex].
When x is greater than 2 [tex]f(x) = -3[/tex]. This implies that the limit of f(x) when x approaches 2 from the rigth is equal to -3. This is:
[tex]\lim_{x \to 2^+}f(x)=-3[/tex] Observe the attached image.