Evaluate the line integral, where C is the given curve. (x + 6y) dx + x2 dy, C C consists of line segments from (0, 0) to (6, 1) and from (6, 1) to (7, 0)

Respuesta :

Split [tex]C[/tex] into two component segments, [tex]C_1[/tex] and [tex]C_2[/tex], parameterized by

[tex]\mathbf r_1(t)=(1-t)(0,0)+t(6,1)=(6t,t)[/tex]

[tex]\mathbf r_2(t)=(1-t)(6,1)+t(7,0)=(6+t,1-t)[/tex]

respectively, with [tex]0\le t\le1[/tex], where [tex]\mathbf r_i(t)=(x(t),y(t))[/tex].

We have

[tex]\mathrm d\mathbf r_1=(6,1)\,\mathrm dt[/tex]

[tex]\mathrm d\mathbf r_2=(1,-1)\,\mathrm dt[/tex]

where [tex]\mathrm d\mathbf r_i=\left(\dfrac{\mathrm dx}{\mathrm dt},\dfrac{\mathrm dy}{\mathrm dt}\right)\,\mathrm dt[/tex]

so the line integral becomes

[tex]\displaystyle\int_C(x+6y)\,\mathrm dx+x^2\,\mathrm dy=\left\{\int_{C_1}+\int_{C_2}\right\}(x+6y,x^2)\cdot(\mathrm dx,\mathrm dy)[/tex]

[tex]=\displaystyle\int_0^1(6t+6t,(6t)^2)\cdot(6,1)\,\mathrm dt+\int_0^1((6+t)+6(1-t),(6+t)^2)\cdot(1,-1)\,\mathrm dt[/tex]

[tex]=\displaystyle\int_0^1(35t^2+55t-24)\,\mathrm dt=\frac{91}6[/tex]