Respuesta :

Answer:

Step-by-step explanation:

sin(θ) = 2/7

sin²(θ) +cos²(θ) =1

[tex](\frac{2}{7})^{2} +cos^2(theta)=1 \\\\cos^2(theta)=1-(\frac{4}{49} )=\frac{49}{49}-\frac{4}{49} =\frac{45}{49} \\ \\cos(theta)=+/-\sqrt{\frac{45}{49} } =+/-\frac{3\sqrt{5} }{7}[/tex]

[tex]Answer \\ is \frac{3\sqrt{5} }{7}[/tex]

Answer is positive because tangent is positive, sin is also positive, and tan=sin/cos.

The values of sin θ and tan θ from the given value of cos θ are; sin θ = 2/7 and cos θ = (3√5 )/7.

How to write Trigonometric ratios?

[tex]\sin(\theta) = \dfrac{\text{Length of perpendicular}}{\text{Length of Hypotenuse}}\\\cos(\theta) = \dfrac{\text{Length of Base }}{\text{Length of Hypotenuse}}\\\\\tan(\theta) = \dfrac{\text{Length of perpendicular}}{\text{Length of base}}[/tex]

We have been given that

sin θ = 2/7

Now, from trigonometric ratios, we know that;

cos θ = adj/hyp

sin θ = opp/hyp

tan θ = sin θ/cos θ

From right-angled triangle;

adj = √(7² - 2²)

adj = √45

adj = 3√5

Thus;

cos θ = (3√5 )/7

tan θ =  (2/7) / ((3√5)/7)

tan θ = 2/ (3√5 )

The values of sin θ and tan θ from the given value of cos θ are; sin θ = 2/7 and cos θ = (3√5 )/7.

Read more about Trigonometric Ratios at; brainly.com/question/11967894

#SPJ2