Respuesta :

Answer:

5x-12 / (x+3)(x-3)

Step-by-step explanation:

Given expression:\frac{3}{x^2-9}+\frac{5}{x+3}

Using identity a^2-b^2=(a+b)(a-b), we get

=\frac{3}{(x+3)(x-3)}+\frac{5}{x+3}

Taking L.C.M. of the denominator, we get

\frac{3+5(x-3)}{(x+3)(x-3)}=\frac{3+5x-15}{(x+3)(x-3)}

=\frac{5x-12}{(x+3)(x-3)}

\Rightarrow\frac{3}{x^2-9}+\frac{5}{x+3}=\frac{5x-12}{(x+3)(x-3)}

It’s (3/x2-9)+(5/x+3) go help me on my question!