Respuesta :
ANSWER
c.It is neither an odd nor an even function.
EXPLANATION
The given function is
[tex]y = f(x) = {x}^{2} - {x}^{3} [/tex]
If this function is odd, then f(-a)=-f(a).
[tex]f( - a) = {( - a)}^{2} - {( - a)}^{3} [/tex]
[tex]f( - a) = {( a)}^{2} + {( a)}^{3} [/tex]
Now ,
[tex]f( a) = {( a)}^{2} - {( a)}^{3} [/tex]
[tex] - f( a) = - {( a)}^{2} + {( a)}^{3}[/tex]
Since
[tex]f( - a) \ne - f(a)[/tex]
The function is not odd.
Also if the function is even, then
[tex]f( a) = f( - a)[/tex]
Since
[tex]f( a) \ne f( - a)[/tex]
the function is not even.
Hence the function is neither even nor odd.
Answer:
Option c. It is neither an odd nor an even function.
Step-by-step explanation:
The equation [tex]y = x^2 - x^3[/tex] is a function, because there is a single value of y for each value of the domain x.
To test if it is an even function we must do [tex]y = f(-x)[/tex]. If [tex]f(-x) = f(x)[/tex] then it is an even function.
If [tex]f(-x) = -f(x)[/tex] then it is an odd function
[tex]y = f(-x) = (-x) ^ 2 - (- x) ^ 3[/tex]
Simplifying we have:
[tex]y = x ^ 2 + x ^ 3[/tex]
f(-x) is not equal to f(x) so the function is not even.
f(-x) is not equal to -f(x) so the function is not odd.
THE correct answer is the option c