171407
contestada

Plz Help 60 points!!!!
Provide reasons for the proof. Given: ∠2 ≅ ∠4 and ∠2 and ∠3 are supplementary Prove: ∠1 ≅ ∠3

Plz Help 60 points Provide reasons for the proof Given 2 4 and 2 and 3 are supplementary Prove 1 3 class=

Respuesta :

Answer:

7.By transitive property of equality

8.By substitution property

9.Subtraction property of equality

10.Converse of angles congruence postulate.

Step-by-step explanation:

We are given that

[tex]\angle 2\cong \angle 4[/tex] , angle 2 and angle 3 are supplementary and angle 1 and angle 4 are supplementary.

We have to prove that [tex]\angle 1\cong\angle 3[/tex]

We have to write missing statements in given proof.

1.[tex]\angle 2\cong\angle 4[/tex]

Given

2.[tex]m\angle 2=m\angle 4[/tex]

Angle congruence postulate

3.Angle 2 and angle 3 are supplementary.

Given

4.[tex]m\angle 2+m\angle 3=180^{\circ}[/tex]

By definition of supplementary angles

5.Angle 1 and angle 4 are supplementary

Given

6.[tex]m\angle 1+m\angle 4=180^{\circ}[/tex]

By definition of supplementary angles

7.[tex]m\angle 1+m\angle 4=m\angle 2+m\angle 3[/tex]

By transitive property of equality

8.[tex]m\angle 1+m\angle 4=m\angle 4+m\angle 3[/tex]

By substitution property

9.[tex]m\angle 1=m\angle 3[/tex]

Subtraction property of equality

10.[tex]m\angle 1\cong m\angle 3[/tex]

Converse of angle congruence postulate

Answer:

Statement Reason

1.  2  4 1.  Given  

2.  m2 = m4 2.  Angle congruence postulate

3.  2 and 3 are supplementary 3.  Given

4.  m2 + m3 = 180 4.  Definition of supplementary angles

5.  1 and 4 are supplementary 5.  Given

6.  m1 + m4 = 180 6.  Definition of supplementary angles

7.  m1 + m4 = m2 + m3  7.  transitive property of equality

8.  m1 + m4 = m4 + m3 8.  substitution property

9.  m1 = m3 9.  subtraction property

10.  1  3 10. converse of angles congruence postulate