Respuesta :

Answer:

The interest rate of the account is [tex]3\%[/tex]

Step-by-step explanation:

we know that    

The compound interest formula is equal to  

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest  in decimal

t is Number of Time Periods  

n is the number of times interest is compounded per year

in this problem we have  

[tex]t=14\ years\\ P=\$1,863\\ A=\$2,830.97\\n=4[/tex]  

substitute in the formula above  and solve for r

[tex]\$2,830.97=\$1,863(1+\frac{r}{4})^{4*14}[/tex]  

[tex](2,830.97/1,863)=(1+\frac{r}{4})^{56}[/tex]  

[tex](2,830.97/1,863)^{1/56}=(1+\frac{r}{4})[/tex]

[tex][(2,830.97/1,863)^{1/56}-1]=\frac{r}{4}[/tex]    

[tex]r=4*[(2,830.97/1,863)^{1/56}-1]\\ \\r= 0.03[/tex]

Convert to percent

[tex]r= 0.03*100=3\%[/tex]