Respuesta :

Answers:

  • 7:    20 miles
  • 8:    28 miles

  • 9:   1 error
  • 10:   Their speed is 50
  • 11:   365 words in 5 mins

Step-by-step explanation:

  • #7 and #8

Our equation is: [tex]f=2.25+0.20(m-1)[/tex]   With f meaning "fare" (price) and m meaning "miles".

Question 7 - Juan's fare for his ride costs $6.05. We must solve for [tex]m[/tex].

Step 1. Substitute - Substitute the fare for [tex]f[/tex] in the equation.

[tex]6.05=2.25+0.20(m-1)[/tex]

Step 2. Simplify/Solve - Solve for [tex]m[/tex].

[tex]6.05=2.25+0.20(m-1)[/tex]

- Distribute

[tex]6.05=2.25+0.2m-0.2[/tex]

- Subtract 0.2 from 2.25

[tex]6.05=2.05+0.2m[/tex]

- Subtract -2.05 from 6.05

[tex]4=0.2m[/tex]

- Divide both sides by 0.2

[tex]20=m[/tex]

And you have your answer of 20 miles.

Question 8 - Same equation, different fare.

Step 1. Substitute

[tex]7.65=2.25+0.20(m-1)[/tex]

Step 2. Solve

[tex]7.65=2.25+0.20(m-1)\\7.65=2.25+0.20m-0.20\\7.65=2.05+0.20m\\5.6=0.20m\\28=m[/tex]

And like so, we have [tex]m = 28[/tex]

  • Questions 9 - 11

The equation given is [tex]S=\frac{1}{5} (w-10e)[/tex]. S =  typing speed, w = words per 5 mins, and e= errors.

Question 9 -

We are given this information: S = 55, W  = 285. We are solving for e.

Substitute -

[tex]55=\frac{1}{5} (285 -10e)[/tex]

Solve -

[tex]55=\frac{1}{5} (285 -10e)\\55=\frac{1}{5} (285 -10e)\\55= 57-2e\\-2=-2e\\1=e[/tex]

So they would make 1 error.

Question 10 -

Information given: 300 = w, 5=e. We are solving for S

Substitute -

[tex]S= \frac{1}{5} (300-10(5))[/tex]

Solve -

[tex]S= \frac{1}{5} (300-10(5))\\S= \frac{1}{5} (300-50)\\S= \frac{1}{5} (300-50)\\S= \frac{1}{5} (250)\\S= 50[/tex]

Their speed is 50.

Question 11 -

Information given: S = 65, e = 4. We are solving for w.

Substitute -

[tex]65=\frac{1}{5} (w-10(4))[/tex]

Solve -

[tex]65=\frac{1}{5} (w-10(4))\\65=\frac{1}{5} (w-40)\\65=\frac{1}{5}w-8\\73=\frac{1}{5}w\\365=w[/tex]

So w = 365.

  • Hoped this helped!~