Respuesta :

frika

Answer:

1. [tex]\dfrac{x^2}{1}+\dfrac{y^2}{4}=1.[/tex]

2. [tex]\dfrac{x^2}{121}+\dfrac{y^2}{100}=1.[/tex]

Step-by-step explanation:

The equation of the ellipse is

[tex]\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\ (a>b)[/tex]

or

[tex]\dfrac{x^2}{b^2}+\dfrac{y^2}{a^2}=1\ (a<b).[/tex]

1. If the vertex of the ellipse is at point (0,2), then b=2.

If the co-vertex of the elllipse is at point (-1,0), then a=1.

The equation of the ellipse is

[tex]\dfrac{x^2}{1^2}+\dfrac{y^2}{2^2}=1,[/tex]

[tex]\dfrac{x^2}{1}+\dfrac{y^2}{4}=1.[/tex]

This ellipse has foci on y-axis.

2. If the vertex of the ellipse is at point (-11,0), then a=11.

If the co-vertex of the elllipse is at point (0,10), then b=10.

The equation of the ellipse is

[tex]\dfrac{x^2}{11^2}+\dfrac{y^2}{10^2}=1,[/tex]

[tex]\dfrac{x^2}{121}+\dfrac{y^2}{100}=1.[/tex]

Ver imagen frika