Respuesta :

Check the picture below.


[tex]\bf \cfrac{44}{\sqrt{3}}=a\implies \stackrel{\textit{rationalizing the denominator}}{\cfrac{44}{\sqrt{3}}\cdot \cfrac{\sqrt{3}}{\sqrt{3}}=a}\implies \cfrac{44\sqrt{3}}{3}=a \\\\[-0.35em] ~\dotfill\\\\ x=\cfrac{a}{tan(24^o)}\implies x=\cfrac{\frac{44\sqrt{3}}{3}}{tan(24^o)}\implies x\approx 57.057 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the triangle}}{A=\cfrac{1}{2}(x+44)(a)}\implies A\approx \cfrac{1}{2}(101.057)\left( \frac{44\sqrt{3}}{3} \right)\implies A\approx 1283.596[/tex]

Ver imagen jdoe0001