Respuesta :

gmany

The slope-intercept form of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

Convert 2x - 3y = 13 to the slope-intercept form:

[tex]2x-3y=13[/tex]        subtract 2x from both sides

[tex]-3y=-2x+13[/tex]        divide both sides by (-3)

[tex]y=\dfrac{2}{3}x-\dfrac{13}{3}[/tex]

Let [tex]k:y=m_1x+b_1[/tex] and [tex]l:y=m_2x+b_2[/tex].

[tex]l\ \perp\ k\iff m_1m_2=-1\to m_2=-\dfrac{1}{m_1}[/tex]

We have [tex]m_1=\dfrac{2}{3}[/tex] therefore

[tex]m_2=-\dfrac{1}{\frac{2}{3}}=-\dfrac{3}{2}[/tex]

Equation of a line: [tex]y=-\dfrac{3}{2}x+b[/tex]

Put the coordinates of the point (-6, 5) to the equation of a line:

[tex]5=-\dfrac{3}{2}(-6)+b[/tex]

[tex]5=(-3)(-3)+b[/tex]

[tex]5=9+b[/tex]        subtract 9 from both sides

[tex]-4=b\to b=-4[/tex]

Answer: [tex]\boxed{y=-\dfrac{3}{2}x-4}[/tex]