Respuesta :

Answer: d.5

Step-by-step explanation:

For any complex number z= a+ib , where a and b are arbitrary real numbers.

The modulus of z is [tex]|z|=\sqrt{a^2+b^2}[/tex]

Let  [tex]z=4-3i[/tex] , here a=4 and b= -3

Then,  [tex]|z|=|4-3i|=\sqrt{4^2+(-3)^2}[/tex]

[tex]=\sqrt{16+9}=\sqrt{25}=5[/tex]

Hence, the xpression that is equivalent to |4-3i|  is 5.

Hence, the correct answer is option d 5.

aksnkj

Answer:

The value of [tex]\[\left | 4-3i \right |\][/tex] will be 5.

Step-by-step explanation:

It is required to calculate the value of [tex]\[\left | 4-3i \right |\][/tex].

In the given question, you are asked to calculate the modulus of the complex number [tex]4-3i[/tex].

The modulus of a complex number [tex]a-bi[/tex] can be calculated as,

[tex]\[\left | a-bi \right |\]=\sqrt{a^{2}+b^{2} }[/tex]

So, the value of [tex]\[\left | 4-3i \right |\][/tex] will be,

[tex]\[\left | 4-3i \right |\]=\sqrt{4^{2}+3^{2} }\\\[\left | 4-3i \right |\]=\sqrt{16+9 }\\\[\left | 4-3i \right |\]=\sqrt{25}\\\[\left | 4-3i \right |\]=5[/tex]

Thus, option d. 5 is correct.

For more details, refer the link:

https://brainly.com/question/19554199?referrer=searchResults