Respuesta :

Answer:  (-1, -4) and (-2, -5)

Step-by-step explanation:

Solve the second equation for y:     y + 3 = x   →   y = x - 3  

Use the substitution method. Replace "y" with "x - 3" in the first equation and solve for x.

 y   = x² + 4x - 1

x - 3 = x² + 4x - 1

  0   = x² + 3x + 2

  0   = (x + 1)(x + 2)

0 = x + 1    and      0 = x + 2

-1 = x         and      -2 = x

Next, plug the x-values (x = -1 and x = -2) into the first equation to solve for y.

y = x - 3      and        y = x - 3

  = (-1) - 3    and          = (-2) - 3

   = -4          and          = -5

when x = -1, y = -4      and      when x = -2, y = -5


Check:

Plug the x and y-values into the first equation to verify each solution makes a true statement.

y = x² + 4x - 1                            y = x² + 4x - 1

-4 = (-1)² + 4(-1) - 1                     -5 = (-2)² + 4(-2) - 1

-4 = 1 - 4 - 1                               -5 = 4 - 8 - 1

-4 = -4     [tex]\checkmark[/tex]                                 -5 = -5   [tex]\checkmark[/tex]