Respuesta :

Answer:

Option b is correct.

Divergent

Comparison Test:

Let [tex]0\leq a_n\leq b_n[/tex] for all n.

If [tex]\sum_{n=1}^{\infty} b_n[/tex] converges, then  [tex]\sum_{n=1}^{\infty} a_n[/tex] converges.

If  [tex]\sum_{n=1}^{\infty} a_n[/tex] diverges, then  [tex]\sum_{n=1}^{\infty} b_n[/tex] is also diverges.

Given the series [tex]\frac{25}{3} + \frac{125}{9} +\frac{625}{27}+....[/tex]

⇒[tex]a_n = \frac{5^{n+1}}{3^n}[/tex] for all natural number n.

or

[tex]a_n = 5(\frac{5^n}{3^n})[/tex]

Note that: [tex]4^n > 3^n[/tex] for all natural number n.

then;

[tex]\frac{1}{4^n}<\frac{1}{3^n}[/tex]

or

[tex]\frac{5^n}{4^n}<\frac{5^n}{3^n}[/tex]

[tex]5(\frac{5^n}{4^n})<5(\frac{5^n}{3^n})[/tex]

Geometric series:

[tex]\sum_{n=1}^{\infty} ar^n[/tex]

if [tex]|r| < 1[/tex], then the series is convergent.

if [tex]r\geq 1[/tex] then the series is divergent.

then;

by geometric series,  [tex]\sum_{n=1}^{\infty} 5(\frac{5}{4})^n[/tex] it diverges as r > 1.

By comparison test:

[tex]\sum_{n=1}^{\infty} 5(\frac{5}{3})^n[/tex] diverges.

Therefore, the given series  [tex]\frac{25}{3} + \frac{125}{9} +\frac{625}{27}+....[/tex] is divergent.