Respuesta :

Answer:

This series is divergent

F

Step-by-step explanation:

we are given a series

Firstly, we will find nth term

Numerator:

3, 4, 5,...

so, nth term will be

[tex]a_n=n+3[/tex]

Denominator:

4,5,6,....

so, nth term will be

[tex]b_n=n+4[/tex]

so, we can find it's nth term as

[tex]c_n=\frac{n+3}{n+4}[/tex]

we can use divergent test

[tex]\lim_{n \to \infty}  c_n=\lim_{n \to \infty} \frac{n+3}{n+4}[/tex]

we can divide top and bottom by n

[tex]\lim_{n \to \infty}  c_n= \lim_{n \to \infty} \frac{n/n+3/n}{n/n+4/n}[/tex]

[tex]\lim_{n \to \infty}  c_n= \lim_{n \to \infty} \frac{1+3/n}{1+4/n}[/tex]

now, we can plug n=inf

[tex]\lim_{n \to \infty}  c_n= \frac{1+0}{1+0}[/tex]

[tex]\lim_{n \to \infty}  c_n=1[/tex]

Since, it is non-zero value

so, this series is divergent