Respuesta :

ANSWER
[tex] { \sin ( \theta) } = -\frac{3}{5} [/tex]

EXPLANATION

The cosine function is an even function.

It has the following property.

[tex] \cos( - \theta) = \cos( \theta) [/tex]

This implied that if

[tex] \cos( - \theta) = \frac{4}{5} [/tex]

Then,

[tex] \cos( \theta) = \frac{4}{5} [/tex]

Using the Pythagorean identity,

[tex] { \cos ^{2} ( \theta) } + { \sin ^{2} ( \theta) } = 1[/tex]

We substitute the value of
[tex] \cos( \theta) = \frac{4}{5} [/tex]

into the equation to get,

[tex] ( { \frac{4}{5} })^{2} + { \sin ^{2} ( \theta) } = 1[/tex]

[tex] \frac{16}{25}+ { \sin ^{2} ( \theta) } = 1[/tex]

[tex] { \sin ^{2} ( \theta) } = 1 - \frac{16}{25} [/tex]

[tex] { \sin ^{2} ( \theta) } = \frac{9}{25} [/tex]

We take square root of both sides to get,

[tex] { \sin ( \theta) } = \pm \: \sqrt{ \frac{9}{25} } [/tex]

[tex] { \sin ( \theta) } = \pm \frac{3}{5} [/tex]

It was given that,

[tex] \tan( \theta) \: > \: 0[/tex]

This implies that the angle is in the first quadrant. That is the only quadrant where both the cosine and the tangent ratios are positive.

Hence,

[tex] { \sin ( \theta) } = \frac{3}{5} [/tex].

But the sine function is an odd function.

This means that,

[tex] \sin( - \theta) =-\sin( \theta)[/tex]

Therefore,

[tex] { \sin ( -\theta) } =- \frac{3}{5} [/tex].
lemion

Answer:

[tex]-\frac{3}{5}[/tex]

Step-by-step explanation:

Ver imagen lemion