Respuesta :

Answer:

option-B

Step-by-step explanation:

we can use formula

[tex]PMI=P[\frac{i(1+i)^n}{(1+i)^n-1}][/tex]

where

PMI is monthly payment

P is amount invested

i is interest rate  per period

n is total number of periods

APR=4.4%=0.044

[tex]i=\frac{0.044}{12}=0.00366[/tex]

t=89-65=24 years

Since, there are 12 months in a year

so,

[tex]n=12\times 24=288[/tex]

P=1000000

now, we can plug values

[tex]PMI=1000000[\frac{0.00366(1+0.00366)^{288}}{(1+0.00366)^{288}-1}][/tex]

now, we can solve it

and we get

[tex]PMI=5623.71097[/tex]

So,

The monthly payment is $5623.71097

Since, option-B is closer

So, option-B is answer