Solve the problems below. Please answer with completely simplified exact value(s) or expression(s). Given: ΔАВС, m∠ACB = 90° CD ⊥ AB , m∠ACD = 60°,BC = 6 cm Find CD, Area of ΔABC

PICTIURE:https://homework.russianschool.com/resource?key=00j42

Respuesta :

frika

Answer:

[tex]CD=3\sqrt{3}\ cm,\\ \\A_{ABC}=18\sqrt{3}\ cm^2[/tex]

Step-by-step explanation:

Triangle ABC is right triangle. Since  m∠ACB = 90°  and m∠ACD = 60°, you get m∠BCD = 90°-60°=30°.

Triangle BCD is rigth triangle, then the leg that is opposite to the angle of 30° is half of the hypotenuse. Thus,

[tex]BD=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot 6=6\ cm.[/tex]

By the Pythagorean theorem,

[tex]CD^2=BC^2-BD^2=6^2-3^2=36-9=27,\\ \\CD=3\sqrt{3}\ cm.[/tex]

Then

[tex]CD^2=AD\cdot BD,\\ \\27=3\cdot AD,\\ \\AD=9\cm.[/tex]

Hypotenuse AB of the triangle ABC is equal to

[tex]AB=AD+BD=9+3=12\ cm.[/tex]

The area of the triangle ABC is

[tex]A_{ABC}=\dfrac{1}{2}\cdot AB\cdot CD=\dfrac{1}{2}\cdot 12\cdot 3\sqrt{3}=18\sqrt{3}\ cm^2.[/tex]

Ver imagen frika