Answer:
1 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
{a}^{2}+bb=289a
2
+bb=289
2 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
{a}^{2}+{b}^{2}=289a
2
+b
2
=289
3 Subtract {b}^{2}b
2
from both sides
{a}^{2}=289-{b}^{2}a
2
=289−b
2
4 Take the square root of both sides
a=\pm \sqrt{289-{b}^{2}}a=±√
289−b
2
5 Rewrite 289-{b}^{2}289−b
2
in the form {a}^{2}-{b}^{2}a
2
−b
2
, where a=17a=17 and b=bb=b
a=\pm \sqrt{{17}^{2}-{b}^{2}}a=±√
17
2
−b
2
6 Use Difference of Squares: {a}^{2}-{b}^{2}=(a+b)(a-b)a
2
−b
2
=(a+b)(a−b)
a=\pm \sqrt{(17+b)(17-b)}a=±√
(17+b)(17−b)