please help! I've tried this problem many times but continue to get it wrong.
write the function in vertex form y= -x^2-3x-1

Respuesta :

Answer:

y =- (x + [tex]\frac{3}{2}[/tex])² + [tex]\frac{5}{4}[/tex]

Step-by-step explanation:

the equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

To obtain this form use the method of completing the square

• the coefficient of the x² term must be 1

Take out a factor of - 1 from - x² - 3x

y = -(x² + 3x) - 1

• add/subtract (half the coefficient of the x-term)² to x² + 3x

y = - (x² + 2([tex]\frac{3}{2}[/tex])x + [tex]\frac{9}{4}[/tex] - [tex]\frac{9}{4}[/tex]) - 1

y = -(x + [tex]\frac{3}{2}[/tex])² + [tex]\frac{9}{4}[/tex] - [tex]\frac{4}{4}[/tex]

y = - (x + [tex]\frac{3}{2}[/tex])² + [tex]\frac{5}{4}[/tex] ← in vertex form