Respuesta :

Answer(a):

Order of matrix A = 3x3 {because number of rows=3, number of columns=3}

Order of matrix B = 3x3

Order of matrix C = 1x3


3A will be of order 3x3 because multiply by scalar doesn't change the order. Which is same as the order of matrix B.

So 3A+B is possible.

We simply multiply all elements of A with 3 and add them with corresponding elements of B.

[tex]3\begin{bmatrix}

2 &  -1& 0\\

0 &  5& 0.3\\

1 &  4&10

\end{bmatrix}+

\begin{bmatrix}

5 &  0& 2\\

1 &  -3& 9\\

2 &  0& 4

\end{bmatrix}= \begin{bmatrix}

11 &  -3& 2\\

1 &  12& 9.9\\

5 &  12& 34

\end{bmatrix}[/tex]


Answer(b):

2B will be of order 3x3 because multiply by scalar doesn't change the order. Which is NOT same as the order of matrix C.

So 2B+C is NOT possible.

Answer(c):

CA is possible only if

number of columns of C = number of columns of A

3=3

which is true hence CA is possible.

[tex]\begin{bmatrix}

1 &3  &5

\end{bmatrix}

*\begin{bmatrix}

2 &  -1& 0\\

0 &  5& 0.3\\

1 &  4&10

\end{bmatrix}=

\begin{bmatrix}

1*2+3*0+5*1 & 1*-1+3*5+5*4 & 1*0+3*0.3+5*10

\end{bmatrix}[/tex]

= [tex]\begin{bmatrix}

7 &  34& 50.9

\end{bmatrix}[/tex]

If the matrix is not visible properly then look at the attached picture.

Ver imagen lublana