Respuesta :
1)
f(x) = [tex]\frac{2x + 6}{3x}[/tex] g(x) = [tex]\frac{\sqrt{x} }{3x}[/tex]
f(x) - g(x) = [tex]\frac{2x + 6}{3x}[/tex] - [tex]\frac{\sqrt{x} }{3x}[/tex]
= [tex]\frac{2x + 6 - \sqrt{x} }{3x}[/tex]
2)
f(x) = [tex]\frac{3x - 1}{x - 4}[/tex] g(x) = [tex]\frac{x + 1}{x}[/tex]
f(g(x)) = [tex]\frac{3(\frac{x + 1}{x}) - 1}{(\frac{x + 1}{x}) - 4}[/tex]
= [tex]\frac{2x + 3}{-3x + 1}[/tex]
DOMAIN: x ≠ {4, 0, [tex]\frac{1}{3}[/tex] } ⇒ (-∞, [tex]\frac{1}{3}[/tex] ) U ([tex]\frac{1}{3}[/tex] , 0) U (0, 4) U (4, ∞)
RANGE: y ≠ {[tex]\frac{-2}{3}[/tex] } ⇒ (-∞, [tex]\frac{-2}{3}[/tex] ) U ([tex]\frac{-2}{3}[/tex], ∞)
Answer:
[tex]f(x)=2x+\frac{6}{3x}\\\\g(x)=\sqrt{x}-\frac{8}{3x}\\\\(f-g)x=f(x)-g(x)\\\\=2x+\frac{6}{3x}-\sqrt{x}+\frac{8}{3x}\\\\=2x-\sqrt{x}+\frac{14}{3x}\\\\2.\rightarrow f(x)=3x-\frac{1}{x-4}\\\\g(x)=x+\frac{1}{x}\\\\fog(x)=f(g(x))\\\\=f(x+\frac{1}{x})\\\\=3\times(x+\frac{1}{x})-\frac{1}{x+\frac{1}{x}-4}\\\\fog(x)=3\times\frac{(x^2+1)}{x}-\frac{x}{x^2-4x+1}[/tex]
Domain of gof(x) will be
x≠0---
x²-4x+1≠0
[tex]x\neq \frac{4\pm \sqrt{16-4}}{2}\\\\x\neq \frac{4\pm \sqrt{12}}{2}\\\\x\neq 2 \pm 2 \sqrt{3}[/tex]
x=R-([tex]x\neq \frac{4\pm \sqrt{16-4}}{2}\\\\x\neq \frac{4\pm \sqrt{12}}{2}\\\\x\neq 2 \pm 2 \sqrt{3}[/tex],0)