The freezing point (tf) for t-butanol is 25.50°c and kf is 9.1°c/m. Usually t-butanol absorbs water on exposure to the air. If the freezing point of a 11.9-g sample of t-butanol is measured as 24.59°c, how many grams of water are present in the sample?

Respuesta :

The mathematical expression is given as:

[tex]\Delta T = k_{f}m[/tex]             (1)

where, [tex]\Delta T[/tex] = depression in freezing point

[tex]k_{f}[/tex] = molal freezing point.

Now, first calculate the [tex]\Delta T = 25.50^{o}C -24.59^{o}C[/tex]

[tex]\Delta T= 0.91^{o}C[/tex]

Substitute the values in equation (1), we get

[tex]0.91^{o}C = 9.1^{o}C/m \times  m[/tex]  

[tex]m = \frac{0.91^{o}C}{9.1^{o}C/m}[/tex]

= [tex]0.1 molal[/tex] or  [tex]\frac{0.1 moles of water}{kg of butanol}[/tex]

Now,

In 0.1 moles of water = 1 kg of butanol

So, 11.9 g of butanol = [tex]11.9 g butanol\times \frac{0.1 mol of water}{kg butanol}[/tex]

Convert gram into kilogram, (1 kg =1000 g)

= [tex]11.9 g butanol\times \frac{0.1 mol of water}{kg butanol}\times \frac{1 kg}{1000 g}[/tex]

= [tex]0.00119 mole[/tex]

Mass of water present in sample = [tex]0.00119 mole\times 18 g/mol[/tex]

= [tex]0.02142 g[/tex]

Hence, grams of water present in the sample  = [tex]0.02142 g[/tex]