Respuesta :

log(2x)=4

log2⁢x=4 in exponential form using the definition of a logarithm. If

x x and b b are positive real numbers and b ≠ 1, then log b(x)=y logbx=y is equivalent to by=x. 10 4 = 2x


hope it helps

Answer and explanation:

Given : The transformation(s) that take place on the parent function [tex]f(x) = \log(x)[/tex] to achieve the graph of [tex]g(x) = \log(-3x-6) - 2[/tex].

To find : Describe the transformation(s) ?

Solution :

Parent function [tex]f(x) = \log(x)[/tex]

1) Translate the graph of function to horizontally compress

i.e. f(x)→f(ax), a>0

So,  [tex]f(x) = \log(3x)[/tex] i.e. horizontally compress with 3 units.

2) Translate the graph of function to the left with a unit

i.e. f(x)→f(x+a)

So,  [tex]f(x) = \log(3x+6)[/tex] i.e. Horizontal shift left with 6 units.

3) Translate the graph of function to the down with b unit

i.e. f(x)→f(x)-b

So,  [tex]f(x) = \log(3x+6)-2[/tex] i.e. Vertical shift down with 2 units.

4) Translate the graph of function by reflection about the y-axis

i.e. f(x)→f(-x)

So,  [tex]f(x) = \log(-3x-6)-2[/tex] i.e. Reflection about the y-axis.