Respuesta :

We are given :

[tex] \sqrt{4x^{2}-20x+25} [/tex]

Step 1: factor the part inside square root

The function given inside square root is of quadratic form.

So let us try to factorise it using AC method.

Here A*C = 4*25 = 100

so we have to find factors of 100 that add up to give -20.

the two factors are -10 and -10.

Rewriting the function :

[tex] 4x^{2} -20x+25 [/tex]

=[tex] 4x^{2} -10x-10x+25 [/tex]

=[tex] 2x(2x-5) - 5(2x-5) [/tex]

=[tex] (2x-5)^{2} [/tex]

Step 2:

Now we take square root of the factorised form

[tex] \sqrt{(2x-5)^2} [/tex]

= [tex] 2x-5 [/tex]

Answer : (2x-5)