Respuesta :

check the picture below.

so, assuming d1 and d2 are the diagonals of it, bearing in mind that the diagonals of a rhombus bisect each, cut in equal halves, then we can get the area of one of those 4 congruent triangles in the rhombus, notice each triangle has a base of 6 and a height of 10.

[tex]\bf \stackrel{\textit{area of the 4 triangles}}{4\left[ \cfrac{1}{2}(6)(10) \right]}[/tex]
Ver imagen jdoe0001

Answer: [tex]120\ m^2[/tex]

Step-by-step explanation:

We know that the area of a rhombus is given by :-

[tex]\text{Area}=\dfrac{1}{2}\times d_1\times d_2[/tex], where [tex]d_1\ and \ d_2[/tex] are the diagonals of the rhombus.

Given:

[tex]d_1=12\ m\\\\d_2=20\ m[/tex]

Then, the area of given  rhombus will be :-

[tex]\text{Area }=\dfrac{1}{2}\times12\times20\\\\\Rightarrow\text{area}=120\ m^2[/tex]

Hence, the area of rhombus = [tex]120\ m^2[/tex]