What was the resulting equation ?

Equations can be solved by substitution method.
The resulting equation is: [tex](b)\ \mathbf{\frac{x^2}{25} - \frac{4x^2}{49} = 1}[/tex]
The equations are given as:
[tex]\mathbf{4y = 8x}[/tex]
[tex]\mathbf{\frac{x^2}{25} - \frac{y^2}{49} = 1}[/tex]
Divide through by 4 in [tex]\mathbf{4y = 8x}[/tex]
[tex]\mathbf{y =2x}[/tex]
Substitute 2x for y in [tex]\mathbf{\frac{x^2}{25} - \frac{y^2}{49} = 1}[/tex]
[tex]\mathbf{\frac{x^2}{25} - \frac{(2x)^2}{49} = 1}[/tex]
Evaluate all exponents
[tex]\mathbf{\frac{x^2}{25} - \frac{4x^2}{49} = 1}[/tex]
Hence, the resulting equation is:
[tex](b)\ \mathbf{\frac{x^2}{25} - \frac{4x^2}{49} = 1}[/tex]
Read more about equations at:
https://brainly.com/question/21105092