Respuesta :

From the first equation we get y = 2x.  Subbing this into the second equation, we get:

 x^2    (2x)^2
------ - --------- = 1, or 
  25        49

 x^2      4x^2
------ - --------- = 1
  25        49

Equations can be solved by substitution method.

The resulting equation is: [tex](b)\ \mathbf{\frac{x^2}{25} - \frac{4x^2}{49} = 1}[/tex]

The equations are given as:

[tex]\mathbf{4y = 8x}[/tex]

[tex]\mathbf{\frac{x^2}{25} - \frac{y^2}{49} = 1}[/tex]

Divide through by 4 in [tex]\mathbf{4y = 8x}[/tex]

[tex]\mathbf{y =2x}[/tex]

Substitute 2x for y in [tex]\mathbf{\frac{x^2}{25} - \frac{y^2}{49} = 1}[/tex]

[tex]\mathbf{\frac{x^2}{25} - \frac{(2x)^2}{49} = 1}[/tex]

Evaluate all exponents

[tex]\mathbf{\frac{x^2}{25} - \frac{4x^2}{49} = 1}[/tex]

Hence, the resulting equation is:

[tex](b)\ \mathbf{\frac{x^2}{25} - \frac{4x^2}{49} = 1}[/tex]

Read more about equations at:

https://brainly.com/question/21105092