Respuesta :

Solve (1/8)^-3a = 512^3a
A=0

I took the assignment it’s right.

Answer:

Using exponent rule:

[tex]\frac{1}{a^n}=a^{-n}[/tex]

[tex](a^n)^m = a^{nm}[/tex]

Solve:

[tex](\frac{1}{8})^{-3a} =(512)^{3a}[/tex]

We can write 512 as:

[tex]512 = 8 \cdot 8 \cdot 8 = 8^3[/tex]

then;

[tex](\frac{1}{8})^{-3a} =(8^3)^{3a}[/tex]

⇒[tex](\frac{1}{8})^{-3a} =(8)^{9a}[/tex]

Using exponent rule we have;

⇒[tex](8^{-1})^{-3a} =(8)^{9a}[/tex]

⇒[tex](8)^{3a} =(8)^{9a}[/tex]

On comparing both sides we have;

3a = 9a

⇒9a-3a = 0

⇒6a = 0

⇒a = 0

Therefore, the value of a = 0