LMN≅PQR What is the value of x in degrees? Enter your answer in the box. ​x​ = ° Coordinate graph showing triangle L M N and triangle P Q R. Triangle L M N has coordinates begin ordered pair negative 2 comma 3 end ordered pair, begin ordered pair negative 1 comma 6 end ordered pair, and begin ordered pair 1 comma 3 end ordered pair. Triangle P Q R has coordinates begin ordered pair 2 comma 1 end ordered pair, begin ordered pair 3 comma negative 4 end ordered pair, and begin ordered pair 5 comma negative 1 end ordered pair. The measure of angle L is labeled 72 degrees. The measure of angle N is labeled x degrees. The measure of angle Q is labeled 52 degrees.

Respuesta :

Answer:

The value of x

[tex] x=56^{\circ}[/tex].

Step-by-step explanation:

Given

[tex]\triangle LMN\cong \triangle PQR[/tex]

[tex]\therefore \angle L=\angle P[/tex]

[tex]\angle M=\angle Q[/tex]

[tex]\angle N=\angle R[/tex]

The vertices of triangle LMN at L(-2,3),M(-1,6) and N(1,3).The vertices of triangle PQR at P(2,1),Q(3,-4) and R(5,-1).

[tex] m\angle L=72^{\circ}[/tex]

[tex] m\angle N=x^{\circ} [/tex]

[tex]m\angle Q=52^{\circ} [/tex]

We know that [tex] \angle Q= \angle M=52^{\circ}[/tex]

In triangle LMN

[tex]m\angle L+m\angle M+m\angle N=180^{\circ}[/tex]

By angle sum property of angles

72+52+x=180

124+x=180

By adding property of integers

x=180-124

By subtraction property of equality

[tex]x=56^{\circ}[/tex]

Hence, the measure of angle N=x=[tex]56^{\circ}[/tex].