Respuesta :

Answer: The simplified form is [tex]\frac{x-1}{x(x+1)}[/tex].


Step-by-step explanation:

Given expression [tex]\frac{1}{x} -\frac{2}{x^2+x}[/tex].

Let is factor second denominator [tex]x^2+x[/tex] first.

Factoring out GCF x we get

[tex]x^2+x= x(x+1)[/tex]

Rewriting the equation

[tex]\frac{1}{x} -\frac{2}{x^2+x} = \frac{1}{x} - \frac{2}{x(x+1)}[/tex]

Now, we need to find the lowest common denominator of x and x(x+1).

The lowest common denominator of x and x(x+1) is x(x+1).

So, we need to multiply first fraction by (x+1) in top and bottom to get lowest common denominator  x(x+1) under first fraction.

[tex]\frac{1}{x} - \frac{2}{x(x+1)} = \frac{1(x+1)}{x(x+1)} - \frac{2}{x(x+1)}[/tex]

[tex]= \frac{x+1}{x(x+1)} - \frac{2}{x(x+1)}[/tex]

We got denominators same.

Therefore, subtracting numerators, we get

[tex]=\frac{x+1-2}{x(x+1)}[/tex]

[tex]\frac{x-1}{x(x+1)}[/tex].

Therefore, simplified form is [tex]\frac{x-1}{x(x+1)}[/tex].