[tex]\\ x^{2} x^{2} \sqrt{x} \sqrt[n]{x} \left \{ {{y=2} \atop {x=2}} \right. \beta \pi \neq \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right. \beta \alpha \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] x_{123} \leq \geq \neq \pi \frac{x}{y} \sqrt[n]{x} \sqrt{x} x^{2} \\ \\ x^{2} \leq \left \{ {{y=2} \atop {x=2}} \right.[/tex]